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Abstract—This paper presents FITS, or Feature-value /
Instance Transposition Selection, a method for unsupervised
clustering. FITS is a tractable, explicable clustering method,
which leverages the unsupervised feature value selection algo-
rithm known as UFVS in the literature. FITS combines repeated
rounds of UFVS with alternating steps of matrix transposition
to produce a set of homogenous clusters that describe data well.
By repeatedly swapping the role of feature and instance and
applying the same selection process to them, FITS leverages
UFVS’s speed and can perform clustering in our experiments
in tens milliseconds for datasets of thousands of features and
thousands of instances.

We performed feature selection-based clustering on two real-
world data sets. One is aimed at topic extraction from Twitter
data, and the other is aimed at gaining awareness of energy
conservation from time-series power consumption data. This
study also proposes a novel method based on iterative feature
extraction and transposition. The effectiveness of this method
is shown in an application of Twitter data analysis. On the
other hand, a more straightforward use of feature selection is
adopted in the application of time series power consumption
data analysis.

Index Terms—feature selection, clustering, twitter data, time-
series data

I. INTRODUCTION

Unsupervised clustering is one of the hardest problems
in machine learning. The difficulty arises from two funda-
mental challenges, tractability and explainability. Clustering
problems can be intractable because a dataset can be de-
scribed by a union of feature sets, each of which consists
of unrelated observations of the same instances, which may
have n potential combinations, each of which may fall into
m clusters, yielding a theoretical maximum of mn potential
clusterings.

The number of instances can be significantly less than the
sufficient number for effective clustering since the exponen-
tial function mn rapidly exceeds the size of practical datasets
as n increases.

Clustering problems can also be inexplainable because the
emergent behavior of some algorithms can make identifying
the features that determine a particular clustering difficult, as
when a set of features is substantially different in particular
columns, and the clustering grows to encompass apparently-
unrelated instances. In supervised learning, these problems

matter less because class labels establish a relationship be-
tween features and instances, which guarantees explicability.
The guarantee of explicability in turn places a limit on the
possibility of completely independent feature sets, which
guarantees the problems will be tractable [6]. In unsupervised
learning, these problems affect every approach.

Preemptive feature selection, on the other hand, can solve
both tractability and explainability problems. An effective
feature selection algorithm can pare a feature set down to
a tractable subset, which reduces the work of the clsutering
algorithm. A reduced feature subset is usually more explain-
able. Moreover, a feature value selection algorithm can yield
better results because feature values explain clusters better
than features [6].

This paper presents FITS (Feature-value/Instance Transpo-
sition Selection), a novel method that solves the tractability
and explainability problems by incorporating a new idea into
the process of feature selection.

The idea originates from feature/instance transposition, or
swapping the role of “feature” and “instance” to refine the
dataset. It is common to view a dataset as a matrix, with
columns corresponding to features and rows as instances.
Transposing a matrix, however, swaps the role of “feature”
and “instance.” Hence, applying feature selection to the
transposed matrix (dataset) results in selection of instances.

This method, however, will not work effectively because
of the lack of symmetry between features and instances: For
a single feature, the values across instances vary, but within
the same scale; For a single instance, by contrast, values
across features may belong to unrelated scales.

One way to avoid this problem is to convert features
into feature values by one-hot encoding. This binarization
converts all values to numbers in F2 = {0, 1}. Turning
values into a dimensionless quantity establishes a symmetry
between feature values and instances.

By iterating feature value selection and matrix transposes,
we refine the feature values selected into values that catego-
rize the instances into consistent, explainable clusters.

Because our method requires many iterations of feature
value selection, we use UFVS [6], which requires only a
few tens of milliseconds to process datasets with thousands



of features and instances on a typical laptop PC.
This paper demonstrates the effectiveness of our method

by applying it to two real-world problems. First, we extract
topics from Twitter data. Twitter is characterized by very
short texts in an informal style, and existing topic modeling
methods such as LDA and matrix decomposition often per-
form poorly. Our method, on the other hand, extracts high
quality topics with meaningful features. The second example
is discovering patterns from classroom power consumption
sensor data on a university campus. In this paper, we present
these two cases as instances in which FITS extracts mean-
ingful information from real-world datasets.

This paper is organized as follows. Section II introduces
related work on feature (value) selection and real world
data clustering. Section III describes our proposed method.
Section IV demonstrates experimental results of our method.
Finally, Section V offers directions for future research.

II. RELATED WORK

A. Feature Selection and Feature Value Selection
A number of practical feature selection algorithms for

supervised learning have been proposed in the literature [3]–
[5], [7].

In many of them, feature selection is described as a
process of iteratively eliminating features irrelevant to class
labels and features mutually redundant [4] until reaching a
sufficiently small set of features. In [7], it is claimed that
interacting relevant features, which are individually irrelevant
but relevant to class labels as a group, should be incorporated
into selection. Under the combined definition, we note that, in
supervised learning, class labels play a crucial role in guiding
feature selection.

Unsupervised learning, in contrast, is performed without
class labels. Therefore, for unsupervised feature selection, we
need an alternative principle that replaces class labels. Some
unsupervised feature selection algorithms in the literature
leverage pseudo-labels as a substitute for class labels [11]–
[13], which are determined prior to feature selection using
some known clustering algorithms. Some other methods
select features to preserve intrinsic structures of data such
as manifold structures [1], [10], [14] and data-specific struc-
tures [8], [9]. One of the problems of these approaches is
low time efficiency. In fact, generating pseudo-labels and
finding underlying structures require heavy computation such
as decomposing huge matrices.

UFVS [6], on the other hand, selects feature values rather
than features under the constraint that the percentage of
instances that can be explained by the selected feature values
must not be lower than a predetermined value specified as the
coverage parameter ξ. In other words, UFVS selects minimal
feature value subsets guaranteeing the minimum explainabil-
ity determined by ξ. The most important advantage of UFVS
is its significantly high time efficiency. In fact, it processes
datasets with thousands of features and instances in only a
few tens of milliseconds. In this paper, we use UFVS because
can be repeated many times very quickly.

B. Real World Data Clustering
This paper explores two real-world applications of FITS:

Twitter topic extraction, and discovering patterns in energy
consumption.

Our first example is Twitter topic extraction. Topic models,
such as Latent Dirichlet Allocation (LDA) [23], are widely
used for topic extraction. However, Twitter is characterized
by very short texts and informal styles, it is not easy to
apply a topic model that assumes a certain length of texts.
In order to overcome this problem, aggregating all the tweets
of one user as a single document has been proposed [15],
[16]. However, a single tweet is usually about a single topic,
there is a risk of losing each topic information in aggregated
tweets. [17] proposed adding labels (hashtags) to tweets in
advance, and combining Tweets into a single document. But
this has the disadvantage of making extracted topics label-
dependent. [18] uses hashtags, authors, and a network of
followers to create a single document from Tweets. [19]
proposed the Twitter-LDA model that assumes Twitter has
a fixed number of topics and each of which is represented
by a word distribution. These methods require additional
information for topic extraction.

Alternatives to LDA exist for topic extraction, such as di-
mensionality reduction using non-negative matrix factoriza-
tion (NMF) [20]. However, NMF loses the original features,
or words, which makes extracting meaning difficult.

Our second example is analysis of time series electricity
consumption data. To promote saving energy, research into
analysis of electricity consumption data monitored by smart
meters has been ongoing [21], [22], [24], [27]–[29]. Gajown-
iczek et al. [25] analyzed data from smart meters to detect
household characteristics for contributing to higher energy
awareness. They used some machine learning, data mining
and visualization techniques: k-means clustering, multidi-
mensional scaling, grade correspondence analysis and over-
representation map. University campuses are an especially
good case study for energy conservation as they contain
large numbers of buildings that consume significant energy:
reducing consumption is both good for the environment and
can reduce costs. The University of Tokyo is promoting
the “The Green University of Tokyo Project” [30], which
utilizes IT/ICT tools and encourages awareness of energy
conservation by visualizing energy consumption in real time.
In this paper, as one example of the application, we focus
on clustering after feature selection on time series electricity
consumption data of a large number of classrooms in uni-
versity campus.

III. CLUSTERING BASED ON FEATURE-VALUE/INSTANCE
TRANSPOSITION SELECTION (FITS)

We first provide an overview of UFVS and then explain
the process of FITS-based clustering.

A. UFVS [6]

As mentioned, we deploy UFVS [6] as a feature value
selection engine because of its high time efficiency. In this
section, a brief description of UFVS is given.

When an unlabeled dataset D is inputted into UFVS [6], D
is first equivalently transformed into Db by one-hot encoding
so that all the features of Db take binary values 0 or 1. When
F denotes the entire feature set that describe D, we let Fb

denote the entire feature set of Db.
UFVS takes two parameters: the coverage parameter ξ

and the threshold parameter t. ξ determines the minimum



U
FV

S

Transpose

U
FV

S

Transpose

D

a

b

D = D[S]

a

c

D = DT

c
a

D = D[S]

c

d

D = DT

d
c

Repeat until the matrix size is unchanged.

Fig. 1. Feature-value/Instance Transposition Selection: An input D is a
matrix with a rows and b columns over F2 by applying one-hot encoding,
if necessary.

percentage of instances to be explained by the selected
feature values. t is a minimum number of instances that a
feature value must occur in to be considerd for selection.
By varying the parameter values, UFVS can produce a wide
range of different sets of feature values, which are, in other
words, different local solutions in the search range.

B. FITS-based Clustering

Algorithm 1 describes FITS with UFVS as a feature
value selection engine, and how FITS can be combined with
clustering. We should note that the framework of FITS is
independent of any specific feature value selection engine,
as far as it is fast enough to perform many iterations.

Algorithm 1 FITS and FITS-based clustering
Require: An unlabeled dataset D described by binary fea-

tures F ; a coverage ξ ∈
[
1
2 , 1

]
; a threshold generator

t(·).
Ensure: A clustering of instances of D.

1: Let Sold = F ;
2: Let Snew = UFVS(D, ξ, t(ξ));
3: Let D = D[Snew];
4: while Snew $ Sold do
5: Let D = DT;
6: Let D = D[UFVS(D, ξ, t(ξ))];
7: Let D = DT;
8: Let Sold = Snew;
9: Let Snew = UFVS(D, ξ, t(ξ));

10: Let D = D[Snew];
11: end while
12: Run a clustering algorithm on D.

Algorithm 1 describes our clustering algorithm: For sim-
plicity, we assume D = Db and F = Fb, that is, all the
features of D are binary; In other words, D is viewed as a
matrix over the binary field of F2 = {0, 1}; The threshold
generator function t(ξ) generates a value of the threshold
parameter t; Although the range of possible threshold values
depends on ξ, it always includes zero; An example of t(·) is
to always select t = 0; The other extreme exmple is to always
select the possible maximum; A setting so that t(·) selects a
threshold following a predetermined probability distribution
is possible; DT denotes the transpose of D; Also, when S is a
subset of the column set of D, D[S] denotes the sub-matrix
of D that consists of the column vectors in S; UFVS is
understood as a function UFVS(D, ξ, t) that takes a dataset
D, a coverage ξ and a threshold t as arguments; At the last

step (Step 12), an arbitrary clustering algorithm is applied to
the relevant D and returns clusters of instances; The instances
that are in the original D but not in the last shrunken D form
a single cluster in the output.

IV. APPLICATIONS

A. Twitter Topic Extraction

Data gathering was a two-step process. First, we searched
the twitter API for all tweets that mentioned a series of
coronavirus-related keywords. We collected about a week’s
worth of tweets for each keyword, between roughly March
13-March 21. Then, we extracted a list of all users in our
dataset. This yielded around 600,000 users. We selected a
sample of around 100,000 users. For each of these users, we
gathered all tweets the user had sent between February 10,
2020 and the beginning of April.

From the above data, we extracted a dataset of of 24,142
tweets posted from 9:00 pm to 9:30 pm on March 1, 2020.
In early March, when the corona epidemic was gradually
spreading in Japan, so 1717 Tweets with the word “corona”
can be found in the target tweets. Morphological analysis
(MeCab) was used to stem the Japanese text, and extract
keywords from each Tweet. This produced a matrix of 24,142
tweets (instances) x 49,342 unique words (features). Then we
applied FITS to form clusters. As described in III, we applied
UFVS several times by transposing the matrix. Figure 2
shows the process for applying FITS to the target Twitter
data. For simplicity, in Figure 2 we assume D = Db and all
the features of D are binary.

First, we set the coverage parameter ξ = 0.9 and the
threshold generator generated the threshold value t = 20.
The first round of UFVS produced a matrix of 24,142 tweets
(instances) by 2,132 words (features). The first matrix trans-
pose produced a matrix of 2,132 words (instances) by 24,142
tweets (features). The second UFVS produced a matrix of
2,132 words and 9,827 tweets with the coverage parameter
ξ = 0.9 and the threshold parameter t = 20. The second
transpose produced a matrix of 9,827 tweets (instances) and
2,132 words. For the third round of UFVS, we changed the
coverage parameter to ξ = 0.9 and the threshold generator
generated the threshold value t = 0, which produced a matrix
of 9,827 tweets (instances) by 1,853 words (features). We
then stopped the process because we confirmed that the
1,853 words (features) were included in the 2,132 words
(features) of the previous matrix. Furthermore, the dimension
of the word in the matrix obtained was reduced to two
dimensions for visualization by using t-SNE [26], a popular
dimensionality reduction method, with Hamming distance
and a perplexity parameter of 30. We then applied the
DBSCAN clustering algorithm [2], setting the maximum
distance between samples (eps) to 2 and number of samples
in a neighborhood (min samples) to 10. This produced 309
clusters. Figure 3 shows the clustering results.

Figure 4 shows the word clouds from the clusters derived
from FITS. In this figure, five clusters from A to E are given
as examples of extracted topics. The word clouds show that
each topic has the following contents.

1) Cluster A: The third anniversary of a game’s release
2) Cluster B: A popular animated TV program that aired

on March 1
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Fig. 2. Applying FITS to Twitter Data

Fig. 3. Clustering Results for the Target Data

3) Cluster C: A popular drama that aired on March 1
4) Cluster D: COVID-19
5) Cluster E: A YouTube Live concert on March 1
Of these topics, four are about entertainment topics, and

only one is related to COVID-19. The COVID-19 topic
includes words such as “spread of infection” and “masks,”
which shows people starting to worry about the pandemic.
The meaning of each topic is readily apparent from the
keywords. While existing clustering methods tend to form
clusters consisting of retweets, our method can extract
semantically-close and clearer topics by extracting words as
features and further transposing them to extract important
tweets. Thus, FITS-based clustering can extract quality top-
ics.

B. Electricity Consumption

Chiba University of Commerce was looking for ways to
reduce electricity consumption in a large number of class-
rooms. This example shows how we performed dimension
reduction visualization after feature selection.

The electricity consumption of each classroom was
recorded in 30-minute time slots when classes were in ses-
sion (9:00 to 18:30) during a summer semester (16 weeks).
An instance is one classroom on one day, with a feature

(column) for each time slot, which yields a dataset of 3782
instances and 19 features. For simplicity, we have treated the
electricity consumption data as on-off binary data. Figure 5
shows this matrix by heat map.

First, we perform feature selection. Here, we used UFVS
and the parameters are set to ξ = 0.95 and t = 2000. As
a result, the time slots 9:00, 11:00, 11:30, 15:30, and 16:30
were selected as features and the number of features was
reduced from 19 to 5. Next, we performed a dimensionality
reduction visualization using t-SNE with Manhattan distance.

Figures 6 and 7 show t-SNE visualizations using a perplex-
ity parameter of 5, with and without the feature selection,
respectively. In both cases, a large cluster of classrooms
consuming electricity all day long (Continuously On) and a
large cluster of classrooms keeping electricity consumption
zero all day long (Continuously Off) are found. On the other
hand, in Fig. 6, classrooms with no electricity consumption
only in the early morning (Early Morning Off) form a
moderate-size cluster, whereas in Fig. 7, no such a cluster is
formed. Changing the perplexity parameter up to 30 in the
t-SNE visualization without feature selection, a small cluster
of Early Morning Off are formed, as shown in Fig. 8. In this
case, clusters of Continuously On and Off are not formed
and such classrooms are spread broadly.

Figures 9 and 10 are heat maps of clusters of Early Morn-
ing Off in Figs. 6 and 8, respectively. After applying UFVS,
although some classrooms with no electricity consumption
on the dropped features (time slots) are incorporated to the
cluster, a larger number of classrooms with similar electricity
consumption patterns are gathered into the cluster. On the
other hand, without UFVS, only classrooms with precisely-
equal consumption pattern cluster together.

By adjusting the UFVS parameters appropriately, feature
selection can be performed with a slight reduction of in-
formation while retaining sufficient information from the
original data. As a result, it is possible to find larger clusters
with coarse-graining, which can be useful when a small
variance in the cluster is not important, as in this case.

V. CONCLUSION

Our work has both shown that FITS solves the problems
of intractability and inexplicability in two very different
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Fig. 5. Heat map of Data Matrix (yellow is on, and blue is off.)

Continuously On

Continuously Off

Early Morning Off

Fig. 6. t-SNE Visualization (Perplexity: 5) with UFVS

applications. These applications demonstrate our algorithm’s
generality and the range of possibilities it offers. Our future
work will evaluate the performance of FITS in relation to
other clustering approaches, and examine its application in a
wider variety of problems.
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